Lecture on West Virginia Education Objective: Building a Function to Model a Relationship Between Two Quantities
Introduction
A function is a mathematical model that describes the relationship between two quantities. The first quantity is called the input variable, and the second quantity is called the output variable. For example, the function describes the relationship between the input variable and the output variable . The output variable is always equal to the input variable squared.
Building a Function to Model a Relationship Between Two Quantities
To build a function to model a relationship between two quantities, we need to first identify the relationship between the two quantities. Once we have identified the relationship, we can write a mathematical expression that describes the relationship.
For example, suppose we want to build a function to model the relationship between the height of a weather balloon and the temperature at the location of the weather balloon. We know that the temperature in the atmosphere decreases as height increases. Therefore, we can write the following mathematical expression to describe the relationship between the two quantities:
T(h) = T_0 - kh
where:
- is the temperature at the height
- is the temperature at ground level
- is a constant that represents the rate of change of temperature with height
The constant can be determined by collecting data on the temperature at different heights. Once we have determined the value of , we can use the above equation to calculate the temperature at any height.
Composition of Functions
The composition of two functions is a new function that is created by applying one function to the output of another function. For example, suppose we have two functions and . The composition of and , denoted by , is defined as follows:
(f \circ g)(x) = f(g(x))
This means that we first apply the function to the input variable , and then we apply the function to the output of .
West Virginia Education Objective
The West Virginia Education Objective M.4HSTP.20 states that students should be able to build a function that models a relationship between two quantities, including composition of functions.
This objective is important because it allows students to model real-world phenomena using mathematics. For example, students can use functions to model the relationship between the distance traveled by a car and the time spent traveling, or the relationship between the interest earned on a savings account and the amount of money saved.
Example
Suppose we want to use the function to model the temperature at the location of a weather balloon that is rising at a constant rate of meters per second. We can use the function to model the height of the weather balloon as a function of time.
The temperature at the location of the weather balloon as a function of time can be modeled by the following composite function:
T(h(t)) = T_0 - k(20t)
This function tells us that the temperature at the location of the weather balloon is equal to the temperature at ground level minus a constant multiple of the time that the weather balloon has been rising.
Conclusion
The West Virginia Education Objective M.4HSTP.20 is an important objective because it allows students to model real-world phenomena using mathematics. Students can use functions to model the relationship between two quantities, and they can also use composition of functions to model more complex relationships.
Select Video
Sure, here are some videos that explain how to write a function that describes a relationship between two quantities:
- Writing equations for relationships between quantities | 6th grade | Khan Academy by Khan Academy
- How to Determine if the Relationship Between Two Quantities Represents a Function by Cheryl Marie Grant
- Finding the Relation/Equation from a table by Math with Mr. Barnes
- How to Write an Equation That Represents the Relationship Between X & Y by eHowEducation
- Linear Relationship Between Variables : Algebra by ehow
Test
Here is a 10-question test with answers and explanations for each answer, based on the image you sent:
Question 1
What is a function?
Answer: A function is a mathematical relationship between two quantities, where each input value has exactly one output value.
Explanation: Functions can be represented in many different ways, including equations, tables, and graphs.
Question 2
Give an example of a function.
Answer: One example of a function is the relationship between the distance traveled by a car and the time spent traveling. For example, if a car travels at a constant speed of 60 miles per hour, then the distance traveled is equal to the time spent traveling multiplied by 60. This relationship can be represented by the following function:
f(t) = 60t
where:
- is the distance traveled in miles
- is the time spent traveling in hours
Explanation: This function tells us that for every hour that the car travels, it will travel 60 miles.
Question 3
What is the difference between the input variable and the output variable of a function?
Answer: The input variable is the variable that is plugged into the function. The output variable is the value that is produced by the function.
Explanation: In the example function , the input variable is and the output variable is .
Question 4
What is the domain of a function?
Answer: The domain of a function is the set of all possible input values for the function.
Explanation: The domain of a function is often defined by the mathematical expression that represents the function. For example, the domain of the function is the set of all non-negative real numbers.
Question 5
What is the range of a function?
Answer: The range of a function is the set of all possible output values for the function.
Explanation: The range of a function is also often defined by the mathematical expression that represents the function. For example, the range of the function is the set of all non-negative real numbers.
Question 6
What is the composition of two functions?
Answer: The composition of two functions is a new function that is created by applying one function to the output of another function.
Explanation: For example, suppose we have two functions and . The composition of and , denoted by , is defined as follows:
(f \circ g)(x) = f(g(x))
This means that we first apply the function to the input variable , and then we apply the function to the output of .
Question 7
Give an example of the composition of two functions.
Answer: One example of the composition of two functions is the relationship between the height of a weather balloon and the temperature at the location of the weather balloon.
Suppose we have the following two functions:
T(h) = T_0 - kh
h(t) = 20t
where:
- is the temperature at the height
- is the temperature at ground level
- is a constant that represents the rate of change of temperature with height
- is the height of the weather balloon at time
The composition of these two functions, denoted by , is defined as follows:
(T \circ h)(t) = T(h(t)) = T_0 - k(20t)
This function tells us that the temperature at the location of the weather balloon as a function of time is equal to the temperature at ground level minus a constant multiple of the time that the weather balloon has been rising.
Question 8
When is it useful to use the composition of functions?
Answer: The composition of functions is useful when we want to model a relationship between two quantities
This is a complicated model which demonstrates the use of Artificial Intelligence in the classroom.
Questions: Place comments or corrections in FB Posting
No comments:
Post a Comment